THE DISCRETE FOURIER TRANSFORM (DFT) AND ITS USES

1. INTRODUCTION AND PRELIMINARIES
2. ROOTS OF 1 ON THE COMPLEX PLANE
3. THE DFT MATRIX
4. VECTORS FROM SEQUENCES
5. FREQUENCY INTERPRETATION OF DFT SIGNALS — WITHOUT PROOFS
6. DEMO: MATLAB
7. INTERPOLATION VIA THE DFT
DFT: \(\hat{X} = F_N X \)

- \(N = \text{odd} = 2N + 1 \)
- \(\downarrow \)
- \(\hat{X} = \sum_{k=0}^{N-1} x_k \)

Time Domain

- \(x(t) : \text{DC} \)
- \(x(t) = a_n, \; t = 0, \ldots, N-1 \)

Frequency Domain

- \(X_0 = N a_0 \)
- \(X_1, X_2, \ldots, X_N = 0 \)

Sinusoid at Fundamental Frequency:

- \(X(f) = A_0 \cos \left(\frac{2\pi}{N} f \right) \)
- \(N \) is an integer

Sinusoid at 2\(^{th}\) Harmonic Frequency:

- \(X(f) = A_2 \cos \left(\frac{2\pi}{N} (f + \frac{N}{2}) \right) \)
- \(N \) is an integer

- \(X_1 = \frac{A_2}{2} e^{i\theta_2} \)
- \(X_2 = \frac{A_2}{2} e^{i\theta_2} \)
- \(X_{N-2} = X_N = \bar{X}_2 \)
- \(X_0, X_1, X_2, \ldots, X_N, X_{N-1} = 0 \)
\[A_1 \cos(2\pi ft + \theta_1) = \frac{A_1}{2} \left(e^{j\theta_1} e^{j2\pi ft} + e^{-j\theta_1} e^{-j2\pi ft} \right) \]

\[\Rightarrow \frac{A_1}{2} \left(e^{j\theta_1} e^{j2\pi ft} \right) = e^{j2\pi ft} \frac{A_1}{2} e^{j\theta_1} \]

\[\Rightarrow 2 \cos(2\pi ft + \theta_1) = e^{j\theta_1} e^{j2\pi ft} \]

\[+ j \sin(2\pi ft + \theta_1) \]

\[(B e^{j\theta} + B^{-j\theta}) \]
SINUSOID AT 3rd HARMONIC: Frequency $= 3 \times \frac{2\pi}{N}$

- $x(t) = A_3 \cos(3 \times \frac{2\pi}{N} t + \theta_3)$ ← REAL
- $z[k] = x[k], \quad k = 0, \ldots, N-1$

SINUSOID AT Mth HARMONIC: Frequency $= M \times \frac{2\pi}{N}$

- $x(t) = A_M \cos(M \times \frac{2\pi}{N} t + \theta_M)$ ← REAL
- $z[k] = x[k], \quad k = 0, \ldots, N-1$

SUM OF ALL THESE SINUSOIDS AT HARMONICALLY RELATED FREQUENCIES (+ DC)

- $x(t) = \sum_{i=0}^{M} A_i \cos\left(\frac{2\pi}{N} i t + \theta_i\right)$ ← REAL
- $z[k] = x[k], \quad k = 0, \ldots, N-1$

GENERATED IN MATLAB

- $x(t)$ and $z[k]$ graphs are shown for different harmonics.

FINDING THE FD OF EACH HARMONIC

- $X_M = A_M e^{j\theta_M}$ ← COMPLEX
- $X_{N-M} = X_M^*$
- $X_{0}, X_1, X_2, \ldots, X_{N-1} = 0$

CONVERTING 2D TO 3D

- $X = F_N x$
- F_N transform is shown in 3D space.
→ **KEY POINT**

→ **TAKE ANY ODD** \(N > 1 \), \(N = 2M + 1 \)

→ **SOMEONE GIVES YOU** \(N \) **SAMPLES OF** \(x(t) = A_0 + \sum_{i=1}^{N} A_i \cos \left(\frac{2\pi i t + \theta_i}{N} \right) \) \(a.t. t = 0, 1, ..., N-1 \)

→ **WITHOUT TELLING YOU** \(A_0, A_i, \theta_i \) \(\Rightarrow \) **YOU DON'T KNOW THE PHASORS** \(\frac{A_i e^{j\theta_i}}{2} \), **OR** \(A_0 \)

→ **JUST TAKE A DFT** : \(X_k = F_N X \)

→ \(\frac{1}{N} \) \(X_i \) **ARE YOUR PHASORS** \((i=1, \ldots, M) \); \(\frac{1}{N} X_0 \) **IS THE DC TERM**!

→ **ALL YOU NEED ARE THE SAMPLES**; **THE DFT GETS YOU THE PHASORS IMMEDIATELY**

→ **CHANGING THE TIME PERIOD / FUNDAMENTAL FREQUENCY**

→ **we had** \(x(t) = A_0 + \sum_{i=1}^{N} A_i \cos \left(\frac{2\pi i t + \theta_i}{N} \right) \)

→ **THE TIME PERIOD** is \(N \) \(\Rightarrow \) **RECALL** : \(\cos \left(\frac{2\pi i t}{T} \right) \) has a period \(2T \).

→ **FUNDAMENTAL FREQ** = \(\frac{1}{\text{TIME PERIOD}} = \frac{1}{N} = f_0 \)

\[x(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos \left(2\pi \frac{n}{N} t + \theta_n \right) \]

Suppose we want a different fundamental frequency
\[x(t) = A_0 + \sum_{i=1}^{M} A_i \cos(2\pi f_i t + \theta_i) \]

\[T = \frac{1}{f_0} \]

I still take \(N = 2M + 1 \) samples, spaced at \(A = T = \frac{1}{f_0} \)

Is the DFT of \(\hat{x} \) still useful?

Yes: it still gives you the phasors. The fundamental and harmonic frequencies are different

\(f_0, 2f_0, \ldots, Mf_0 \)

Instead of \(\frac{1}{N}, \frac{2}{N}, \ldots, \frac{N}{N} \)

Demo: Calling Elvis in MATLAB

CD format: Sample rate = 44,100 samples per second

\[A = \frac{1}{44,100} \]

Spacing of TD samples

We'll take 1 minute = 60s of audio data

= 60 x 44,100 = 2,646,000 samples

We'll take \(N = 2,646,001 \) (to make it odd) \(N = 2m + 1 \)

\[M = \frac{N-1}{2} = 1,323,000 \]
\[T = \text{N} \times \Delta \Rightarrow T = \frac{2,646,003}{44,100} = 60 + 2.267 \times 10^5 \approx 60 \text{s}. \]

\[f_0 = \frac{1}{T} = 1.667 \times 10^2 \text{ Hz.} \approx \frac{1}{60} \]

\[\text{HIGHEST HARMONIC} = Mf_0 = \frac{M}{T} = \frac{M}{N \Delta} = \frac{M}{N} \times 44,100 = \frac{M}{24 \times 6} \times 44,100 \approx 22.05 \text{ Hz} \]

DFT SIZE: \[N \times N \]

\[\frac{1}{4 \times 10^9} \text{ s} \]

MY COMPUTER'S CLOCK PERIOD: \[n \times \frac{1}{4 \text{ GHz}} = 0.25 \times 10^{-9} \text{ s} \]

MINIMUM TIME NEEDED FOR ANY OPERATION

COMPUTER TIME NEEDED FOR F_N X: \[6 \times 10^{-8} \times 0.25 \times 10^9 = 1.5 \times 10^2 \text{ s} \]

RUN MATLAB CODE callingelvis.m.

\[X = \frac{A_i e^{j0i}}{2} \]

\[X(f_i, f_0, i=0, \ldots, N) \]

FREQUENCY SPECTRUM OF THE AUDIO SIGNAL

RECALL (I) **THE INVERSE DFT (IDFT)**

\[X = F_N x \iff \hat{x} = F_N^\dagger x \]

CAN SHOW (SEE NOTES) that \[F_N = \frac{1}{N} F_N^\dagger \]
INTERPOLATION VIA THE DFT

\[\hat{x}(k) = A_0 + \sum_{i=1}^{M} A_i \cos \left(2\pi \frac{f_i}{f_0} k + \theta_i \right) \]

- **TD**
 - \(N = 11 \) TD SAMPLES

- **FD**
 - \(N_2 = 17 \) TD POINTS
 - MORE SAMPLES VIA "BAND LIMITED" INTERPOLATION

→ INCREASE M IN THE F.D. REPRESENTATION:
 - \(M_2 = (\text{say}) 8 \Rightarrow N_2 = 2M_2 + 1 = 17 \)

→ DON'T CHANGE THE SPECTRUM: JUST PAD WITH ZEROS

→ \(f_0 \) (FUNDAMENTAL) REMAINS THE SAME
 - SPECTRUM REMAINS THE SAME

→ \(\hat{x}(k) = A_0 + \sum_{i=1}^{M_2} A_{2i} \cos \left(2\pi \frac{f_i}{f_0} k + \theta_i \right) \)

 - with \(A_0 = A_2 = A_4 = 0 \):
 - NO CHANGE TO \(x(t) \)

→ DFT-BASED (BAND-LIMITED) INTERPOLATION: THE PROCEDURE

→ START WITH \(\overline{x} \in \mathbb{R}^N \), \(N = 2M_2 + 1 \) — representing samples at \(0, \frac{T}{N}, \frac{2T}{N}, \ldots, \frac{(N-1)T}{N} \)

→ \(\overline{x} = F_N \overline{x} \) (SIZE \(N \) DFT)

→ CHOOSE SOME \(M_2 > M \) DEFINE \(N_2 = 2M_2 + 1 \)

→ DEFINE \(\hat{x}_2 \) BY:
 - \(\hat{x}_2[0, \ldots, M] = \frac{N_2}{N} \hat{x}[0, \ldots, M] \) — COPY THE PHASORS OF THE ORIGINAL HARMONICS
 - \(\hat{x}_2[N_2-M, \ldots, N_2-1] = \frac{N_2}{N} \hat{x}[M+1, \ldots, N-1] \) — COPY THE CONJUGATES TO THE RIGHT PLACES
 - \(\hat{x}_2[M+1, \ldots, N_2-M-1] = 0 \) — PAD THE EXTRA HARMONICS TO ZEROS.

→ \(\overline{x}_2 = F_N^{-1} \hat{x}_2 \) (SIZE \(N_2 \) INVERSE DFT)

→ INTERPOLATED SAMPLES \(\overline{x} \in \{0, \frac{T}{N_2}, \frac{2T}{N_2}, \ldots, \frac{(N_2-1)T}{N_2}\} \)
\[X(t) = A_0 + \]
\[A_1 \cos(2\pi f_1 t + \theta_1) + \]
\[A_2 \cos(2\pi f_2 t + \theta_2) + \]
\[\vdots \]
\[A_5 \cos(2\pi 5f_1 t + \theta_5) + \]
\[A_6 \cos(2\pi 6f_1 t + \theta_6) + \]
\[A_7 \cos(2\pi 7f_1 t + \theta_7) + \]
\[A_8 \cos(2\pi 8f_1 t + \theta_8) + \]