THE DISCRETE FOURIER TRANSFORM (DFT) AND ITS USES

1. INTRODUCTION AND PRELIMINARIES ✓
2. ROOTS OF 1 ON THE COMPLEX PLANE ✓
3. THE DFT MATRIX ✓
4. VECTORS FROM SEQUENCES ✓
5. FREQUENCY INTERPRETATION OF DFT SIGNALS — WITHOUT PROOFS
6. DEMO: MATLAB
7. INTERPOLATION VIA THE DFT
5. **DFT:** \(\hat{X} = F_N \tilde{x} \)

\[
N = \text{odd} = 2M + 1
\]

\[
\downarrow \quad \text{IDFT} = \frac{1}{N} F_N^* \]

TIME DOMAIN

\(\tilde{x} \)

FREQUENCY DOMAIN

\(\hat{x} \)

TIME DOMAIN

\(x(t) \)

DC SIGNAL

\(x(t) = x[0] \)

\(x[0] = x_0 \)

REAL

\(x(t) = x[k] = a_k, \quad k = 0, \ldots, N-1 \)

FREQUENCY DOMAIN

\(X \)

REAL

\(X_0 = N \cdot a_0 \)

\(X_1, X_2, \ldots, X_N = 0 \)

TIME DOMAIN

Sinusoid at fundamental frequency: \(\frac{2\pi}{N} \)

\(x(t) = A_1 \cos\left(\frac{2\pi}{N} t + \theta_1\right) \)

REAL

\(x(t) = x[k] = a_k, \quad k = 0, \ldots, N-1 \)

FREQUENCY DOMAIN

\(X \)

COMPLEX

\(X_1 = N \cdot A_1 e^{i\theta_1} \)

\(X_0, X_2, \ldots, X_N = 0 \)

\(X_0 = x_0 \)

TIME DOMAIN

Sinusoid at \(2^m \)th harmonic: \(\frac{2\pi}{N} \)

\(x(t) = A_2 \cos\left(\frac{2\pi}{N} t + \theta_2\right) \)

REAL

\(x(t) = x[k] = a_k, \quad k = 0, \ldots, N-1 \)

FREQUENCY DOMAIN

\(X \)

COMPLEX

\(X_2 = A_2 e^{i\theta_2} \)

\(X_0, X_1, X_3, \ldots, X_N = 0 \)

\(X_0 = x_0 \)

\(\hat{x} \)

DC

\(x(t) = x[0] \)

\(x_0 = A_0 \)

\(x[0], x[1], \ldots, x[N-1] \)

SINUSOID AT 3rd HARMONIC: \(\text{FREQUENCY} = \frac{3 \times 2\pi}{N} \)

\[x(k) = A_3 \cos(\frac{3 \times 2\pi k}{N} + \theta_3) \] \(\rightarrow \) \text{REAL}

\[x_k = x(k), \quad k = 0, \ldots, N-1 \]

\[X_k = A_3 \frac{e^{j\theta_3}}{2} \] \(\rightarrow \) \text{COMPLEX}

\[X_0, X_1, X_2, \ldots, X_{N-1} = 0 \]

\[X_3 = A_3 \frac{e^{j\theta_3}}{2} \]

\[\text{SUM OF ALL THESE SINUSOIDS AT HARMONICALLY RELATED FREQUENCIES (+ DC)} \]

\[x(k) = A_0 + \sum_{i=1}^{N} A_i \cos\left(\frac{2\pi i k}{N} + \theta_i\right) \] \(\rightarrow \) \text{REAL}

\[x_k = x(k), \quad k = 0, \ldots, N-1 \]

\[X = F_N x \]

\[X_0 = A_0 \frac{e^{j\theta_0}}{N} \]

\[A_{11} = \frac{-1}{N} \]

\[A_{12} = \frac{1}{N} \]

\[A_{13} = \frac{1}{N} \]

\[A_{14} = \frac{-1}{N} \]

\[X_0, X_1, X_2, \ldots, X_{N-1} \] generated in MATLAB.
\[x(t) = A_0 + \sum_{i=1}^{M} A_i \cos \left(\frac{2\pi i}{N} t + \phi_i \right) \]

Key Point:
- Take any odd \(N > 1 \), \(N = 2M + 1 \)
- Someone gives you \(N \) samples of \(x(t) = A_0 + \sum_{i=1}^{N} A_i \cos \left(\frac{2\pi i}{N} t + \phi_i \right) \) for \(t = 0, 1, \ldots, N-1 \)
- Without telling you \(A_0, A_i, \phi_i \), i.e., you don't know the phasors \(A_i e^{i\phi_i} \) or \(A_0 \)
- Just take a DFT: \(X = F_X \mathbf{x} \)
- \(\frac{1}{N} X_i \) are your phasors \((i=1, \ldots, M)\); \(\frac{1}{N} X_0 \) is the DC term!
- All you need are the samples; the DFT gets you the phasors immediately

Changing the Time Period / Fundamental Frequency
- We had: \(x(t) = A_0 + \sum_{i=1}^{M} A_i \cos \left(\frac{2\pi i}{N} t + \phi_i \right) \)
- The time period is \(N \) (Recall: \(\cos \left(\frac{2\pi t}{T} \right) \) has a period \(2T \)).
- Fundamental freq = \(\frac{1}{\text{Time Period}} = \frac{1}{N} \)

Sinc Function
- \(x(t) = A_0 + \sum_{f=1}^{M} A_f \cos \left(2\pi \frac{f}{N} t + \phi_i \right) \)

Diagram:
- Time Period = \(N \)
Suppose we want a different fundamental frequency

\[x(t) = A_0 + \sum_{i=1}^{M} A_i \cos(2\pi f_i t + \theta_i) \]

\[\Rightarrow \text{time-period} \quad T = \frac{1}{f_0} \]

We still take \(N = 2M+1 \) samples, spaced at \(\Delta T = \frac{T}{N} \)

Is the DFT of \(\mathbf{x} \) still useful?

Yes: it still gives you the phasors

The fundamental and harmonic frequencies are different

\(f_0, 2f_0, \ldots, Mf_0 \)

Instead of \(\frac{1}{N}, \frac{2}{N}, \ldots, \frac{N}{N} \)

Demo: Calling Elvis in MATLAB

CD format: Sample rate = 44,100 samples per second

\[\Delta T = \frac{1}{44,100} \]

Spacing of TD samples

We'll take 1 minute = 60s of audio data

\[60 \times 44,100 = 2,646,000 \] samples

We'll take \(N = 2,646,001 \) (to make it odd)

\[M = \frac{N-1}{2} = 1,323,000 \]
\[T = \frac{N \cdot \Delta}{44,100} = \frac{2,646,600}{44,100} = 60 + 2.267 \times 10^5 \approx 605 \text{ s}. \]

\[\text{FUNDAMENTAL FREQ } f_0 = \frac{1}{T} = 1.667 \times 10^2 \text{ Hz}. \]

\[\text{HIGHEST HARMONIC } = M f_0 = \frac{M}{T} = \frac{M}{N \Delta} = \frac{M}{N} \times 44,100 = \frac{M}{2 \Delta} \times 44,100 \approx 22,050 \text{ Hz}. \]

\[\text{DFT SIZE: } N \times N \]

\[F_n \Rightarrow \text{how many multiplication operations?} \]

\[\text{MY COMPUTER'S CLOCK PERIOD: } \frac{T}{4 \text{GHz}} = 0.25 \times 10^{-9} \Rightarrow \text{needed for any operation} \]

\[\text{COMPUTER TIME NEEDED FOR } F_n \Rightarrow \text{?} \times 0.25 \times 10^{-9} \]

\[\text{RUN MATLAB CODE callingelvis.m} \]

\[\frac{X}{z} = A_i e^{\frac{j \theta_i}{2}} \]

\[X(f), f = i f_0 \]

\[i = 0, \ldots, M \]

\[\text{FREQUENCY SPECTRUM OF THE AUDIO SIGNAL} \]

\[\text{RECALL (??) THE INVERSE DFT (IDFT)} \]

\[\tilde{X} = F_N \tilde{X} \Leftrightarrow \tilde{X} = F_N^{-1} \tilde{X} \]

\[\text{CAN SHOW (see notes) that } F_N = \frac{1}{N} F_N^* \]
INTERPOLATION VIA THE DFT

\[x(t) = A_0 + \sum_{i=1}^{M} A_i \cos \left(2\pi f_0 i t + \theta_i \right) \]

TD

- **N = 11 TD SAMPLES**

FD

- **INCREASE M IN THE F.D. REPRESENTATION:**
 - \(M_0 = (\text{say}) 8 \Rightarrow N_0 = 2M_0 + 1 = 17 \)
 - **DON'T CHANGE THE SPECTRUM:** JUST PAD WITH ZEROS
 - \(N_2 = 17 \text{ TD POINTS} \)

MORE SAMPLES VIA

- **"BAND LIMITED" INTERPOLATION**
 - **MORE SAMPLES**

DFT-BASED (BAND-LIMITED) INTERPOLATION: THE PROCEDURE

- **START WITH** \(\tilde{x} \in \mathbb{R}^M \), \(N = 2M + 1 \) representing samples at \(0, \frac{T}{N}, \frac{2T}{N}, ... \)
- \(\tilde{X} = F_N \tilde{x} \) (SIZE N DFT)
- **CHOOSE SOME** \(M > M_0 \) DEFINE \(N_0 = 2M_0 + 1 \)
- **DEFINE** \(\tilde{X}_2 \) BY:
 - \(\tilde{X}_2[0, \ldots, M] = \frac{N_2}{N} \tilde{X}[0, \ldots, M] \) **COPY THE PHASORS OF THE ORIGINAL HARMONICS**
 - \(\tilde{X}_2[N_0-M, \ldots, N_0-1] = \frac{N_2}{N} \tilde{X}[N_0, \ldots, N_0-1] \) **COPY THE CONJUGATES TO THE RIGHT PLACES**
 - \(\tilde{X}_2[N_0, \ldots, N_0-M-1] = 0 \) **PAD THE EXTRA HARMONICS TO ZEROS**
- \(\tilde{x}_2 = F_N^{-1} \tilde{X}_2 \) (SIZE \(N_2 \) INVERSE DFT)
- **INTERPOLATED SAMPLES** at \(0, \frac{T}{N_2}, \frac{2T}{N_2}, ... \) \(\frac{(N_2-1)T}{N_2} \)