EE16B, Spring 2018
UC Berkeley EECS

Maharbiz and Roychowdhury

Lectures 6B & 7A: Overview Slides

Controller Canonical Form
Observability
Controller Canonical Form (CCF)

- Recall prior example: \(\ddot{x}(t + 1) = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix} \dot{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \)
- char. poly.: \(\lambda^2 - a_2 \lambda - a_1 \): nice simple formula
- Generalization: **Controller Canonical Form (CCF)**

\[
A = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0 & 1 \\
a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n
\end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{bmatrix}
\]

- char poly: \(\lambda^n - a_n \lambda^{n-1} - a_{n-1} \lambda^{n-2} - \cdots - a_2 \lambda - a_1 \)

\(\Rightarrow\) not difficult to show this (though a bit tedious)
- apply determinant formula using minors to the last row
Feedback on CCF

- System: \[\frac{d}{dt} \vec{x}(t) = A\vec{x}(t) + \vec{b}u(t), \text{ with } (A, \vec{b}) \text{ in CCF} \]

- apply feedback \(\vec{k} : A \mapsto A - \vec{b}\vec{k}^T \)

\[
A - \vec{b}\vec{k}^T = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \ldots & 0 & 1 \\
a_1 - k_1 & a_2 - k_2 & a_3 - k_3 & \cdots & a_{n-1} - k_{n-1} & a_n - k_n
\end{bmatrix}, \quad \vec{b} = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
1
\end{bmatrix}
\]

- char poly: \[\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2} - \cdots - (a_2 - k_2)\lambda - (a_1 - k_1) \]

- its roots are the eigenvalues that determine stability
Assigning Desired Roots

- Suppose you want \(\lambda_1, \lambda_2, \ldots, \lambda_n \) to be the roots

- the char. poly. should equal: \((\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) \)
 - (why?)

- Expand out \(\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \cdots + \lambda_n) \lambda^{n-1} + \lambda_1 (\lambda_2 + \cdots + \lambda_n) + \lambda_2 (\lambda_3 + \lambda_4 + \cdots + \lambda_n) + \cdots + \lambda_{n-1} \lambda_n \lambda^{n-2} + \cdots + (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n \)

- equate coefficients against \(\lambda^n - (a_n - k_n) \lambda^{n-1} - (a_{n-1} - k_{n-1}) \lambda^{n-2} - \cdots - (a_2 - k_2) \lambda - (a_1 - k_1) \)

\[
\begin{align*}
 a_n - k_n &= -\gamma_n \\
 a_{n-1} - k_{n-1} &= -\gamma_{n-1} \\
 \vdots \\
 a_1 - k_1 &= -\gamma_1 \\
\end{align*}
\]

\[
\begin{align*}
 k_n &= \gamma_n - a_n \\
 k_{n-1} &= \gamma_{n-1} - a_{n-1} \\
 \vdots \\
 k_1 &= \gamma_1 - a_1 \\
\end{align*}
\]

We just showed: if a system is in CCF, feedback can move its eigenvalues to any desired locations
CCF and Eigenvalue Placement: Examples

\[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}k^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1-k_1 & 2-k_2 & 3-k_3 \end{bmatrix} \]

• char. poly.: \(\lambda^3 - (3-k_3)\lambda^2 - (2-k_2)\lambda - (1-k_1) \)

• desired char. poly.: \((\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)\)

→ say we want: \(\lambda_1 = \lambda_2 = \lambda_3 = 0 \) \(\Rightarrow (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3) \equiv \lambda^3 \)

• then \(k_3 = 3, k_2 = 2, k_1 = 1 \)

→ or, if we want: \(\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3 \) \text{ if time, move to xournal}

• \((\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3) \equiv \lambda^3 + 6\lambda^2 + 11\lambda + 6 \)

\[-(3-k_3) = 6 \quad \Rightarrow \begin{cases} k_3 = 9 \\ k_2 = 13 \\ k_1 = 7 \end{cases} \]

\[-(2-k_2) = 11 \]

\[-(1-k_1) = 6 \]
Converting Systems to CCF

- But CCF seems a very special/restrictive form ...
- ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!

Here’s how you do it:

1. Given any state-space system:
 \[\frac{d}{dt} \vec{x}(t) = A \vec{x}(t) + \vec{b}u(t) \]

2. Form its controllability matrix:
 \[R_n \triangleq \begin{bmatrix} \vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b} \end{bmatrix} \]
 full rank if system controllable; and square, hence invertible

3. Compute its inverse:
 \[R_n^{-1} \]

4. Grab the last row of \(R_n^{-1} \): call it \(\vec{q}^T \)

 \[R_n^{-1} = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vec{q}^T \end{bmatrix} \]
 (\(\vec{q} \) is a col. vector; \(\vec{q}^T \) is a row vector)
Converting Systems to CCF (contd.)

5. Form the **basis transformation matrix** \(T \triangleq \)

6. Define \(\ddot{z}(t) = T \dot{x}(t) \Leftrightarrow \dot{x}(t) = T^{-1} \ddot{z}(t) \)

7. Write the system in terms of \(\ddot{z}(t) \):

\[
\frac{d}{dt} \ddot{z}(t) = TAT^{-1} \ddot{z}(t) + T\hat{b} u(t)
\]

\[
\dot{x}(t) = T^{-1} \ddot{z}(t)
\]

8. \((\hat{A}, \hat{b}) \) **will be in CCF**!

• Proof: see the handwritten notes
Controllable Systems can be Stabilized

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- \(\rightarrow \) Controllable systs. can be stabilized by feedback
- but not necessary to first convert to CCF to stabilize
 - just write out the char. poly. of \(A - \overrightarrow{b}k^T \) directly
 - will be a linear expression in \(k_1, k_2, \ldots, k_n \)
 - match coeffs. of \(\lambda^k \) against those of \((\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) \)
 - will obtain a linear system of equations in \(\overrightarrow{k} \):
 \[M \overrightarrow{k} = \overrightarrow{r} \]
- solve \(M \overrightarrow{k} = \overrightarrow{r} \) for \(\overrightarrow{k} \) (usually numerically)

\(\) determined by the entries of \(A, b, \) and by \(\lambda_1, \ldots, \lambda_n \)
Example: co-operative car control

\[
\begin{align*}
\frac{dp_2}{dt} &= v_2(t) \\
\frac{dv_2}{dt} &= a_2(t)
\end{align*}
\]

\[
\begin{align*}
\frac{dp_1}{dt} &= v_1(t) \\
\frac{dv_1}{dt} &= a_1(t)
\end{align*}
\]

Define \(x_1(t) = p_1(t) - p_2(t) - \delta \)

\[
\frac{d(p_1 - p_2)}{dt} = v_1(t) - v_2(t)
\]

\[
\frac{d(v_1 - v_2)}{dt} = a_1(t) - a_2(t)
\]

With IC = \([0, 0]^T\) and \(u(t) = -\epsilon \), the cars will hit each other in:

\[T = \sqrt{\frac{2\delta}{\epsilon}} \]

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2(t) \\
\frac{dx_2}{dt} &= u(t)
\end{align*}
\]

\[
\Rightarrow \quad \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)
\]

BIBO UNSTABLE
Co-op. Car Control (contd.)

- introduce state feedback:
- eigenvalues:
 \[\lambda_{1,2} = -\frac{k_2}{2} \pm \frac{1}{2} \sqrt{k_2^2 - 4k_1} \]

- stabilization
 - \(k_2 > 0, \ k_1 > 0 \) ensures eigenvalues have -ve real parts
 - small errors in the acceleration \(u(t) \) → only small changes to the desired distance \(\delta \)
 - see handwritten notes for details

\(A \mapsto \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix} \)

- position feedback
- velocity feedback

both sensed by Doppler radar
Observability [Back to Discrete]

- suppose we have just a **SCALAR output** $y[t]$
- i.e., don’t have access to all of $x[t]$ for feedback
- can we recover $x[t]$ just from observations of $y[t]$

More precisely:
- suppose we know: A, b, c^T and $u[t]$
 - and can measure $y(t)$
- can we recover $x[t]$?

If yes: the system is called **OBSERVABLE**
The Observability Matrix

We know that

Suppose \(u[t] = 0 \)

then

\[
\vec{x}[t] = A^{t-1} \vec{x}[0] + \sum_{i=1}^{t} A^{t-i} \vec{b}_u[i - 1]
\]

we know (or can calculate) these

the only unknown

• We know that

\[
\vec{x}[t] = A^{t-1} \vec{x}[0].
\]

Write out

\[
y[t] = \vec{c}^T \vec{x}[t].
\]

Observability matrix \((n \times n)\)

must be full-rank/non-singular/invertible to recover \(\vec{x}(t) \) uniquely from measurements of \(y(t) \)

\[
\begin{bmatrix}
y[0] \\
y[1] \\
y[2] \\
\vdots \\
y[n-1]
\end{bmatrix} \triangleq \begin{bmatrix}
\leftarrow \vec{c}^T \\
\leftarrow \vec{c}^T A \\
\leftarrow \vec{c}^T A^2 \\
\vdots \\
\leftarrow \vec{c}^T A^{n-1}
\end{bmatrix} \vec{x}[0]
\]

\[
\begin{align*}
y[0] &= \vec{c}^T \vec{x}[0] \\
y[1] &= \vec{c}^T \vec{x}[1] = \vec{c}^T A \vec{x}[0] \\
y[2] &= \vec{c}^T \vec{x}[2] = \vec{c}^T A^2 \vec{x}[0] \\
&\quad \vdots \\
y[n-1] &= \vec{c}^T \vec{x}[2] = \vec{c}^T A^{n-1} \vec{x}[0]
\end{align*}
\]
Observability: An Example

\[
\begin{bmatrix}
 x_1[t+1] \\
 x_2[t+1]
\end{bmatrix} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x_1[t] \\
 x_2[t]
\end{bmatrix}
\]

this is a “rotation matrix” - call it A

- Each application of A rotates by θ
Observability: Example (contd.)

\[
\begin{bmatrix}
 x_1[t+1] \\
 x_2[t+1]
\end{bmatrix}
= \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x_1[t] \\
 x_2[t]
\end{bmatrix},
\]

\[y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \bar{x}'[t].\]

- Observability matrix:
 \[O \triangleq \begin{bmatrix}
 \leftarrow \bar{c}^T \rightarrow \\
 \leftarrow \bar{c}^T A \rightarrow
\end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 \cos(\theta) & -\sin(\theta)
\end{bmatrix}\]

- Determinant of \(O\):
 \[\det(O) = -\sin(\theta)\]

- non-zero if \(\theta \neq 0, \pi, 2\pi, \cdots, i\pi\) → observable

- 0 if \(\theta = i\pi\) → not observable
 → cannot recover \(x_2\) uniquely
Observers

- Can we make a system that recovers $\bar{x}[t]$ from $y[t]$ in real time?
 - (we can use our knowledge of A, \bar{b}, $u[t]$ – and $y[t]$)
- YES! (if the system is observable – as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

\[\bar{x}[t+1] = A\bar{x}[t] + \bar{b}u[t]\]
\[\bar{c}^T\]
\[y[t]\]
\[\hat{x}[t+1] = A\hat{x}[t] + \bar{b}u[t] + \bar{l}(\bar{c}^T\hat{x}[t] - y[t])\]

\[\text{called an OBSERVER}\]

\[\text{output of the clone}\]

\[\text{estimate of } \bar{x}[t]\]
Observers – Why/How They Work

- **Observer**: \[
\hat{x}[t + 1] = A\hat{x}[t] + Bu[t] + l(\hat{c}^T \hat{x}[t] - y[t])
\]

 - Define a state prediction error: \[
 \varepsilon'[t] \triangleq \hat{x}[t] - \bar{x}[t]
 \]
 - then we can derive (move to xournal):
 \[
 \varepsilon'[t + 1] = (A + l \bar{c}^T)\varepsilon'[t]
 \]
 - would like \(\varepsilon'[t] \to 0\) as \(t\) increases (i.e., \(\hat{x}[t] \to \bar{x}[t]\))
 - choose \(l\) to make the eigenvalues of \(A + l \bar{c}^T\) stable!
 - strong analogy w controllability (recall \(A - \bar{b} \bar{k}^T\))
 - evs of \(A + l \bar{c}^T = \text{evs of } A^T + \bar{c} l^T \to -\bar{c} \leftrightarrow \bar{b}, \ l^T \leftrightarrow \bar{k}^T\)
 - i.e., can always make \(A + l \bar{c}^T\) **stable if** \((A^T, -\bar{c})\)

 (using previous controllability + feedback result)
Observers – Why/How (contd.)

- \((A^T, -\bar{c})\) controllable \(\rightarrow \) \(-\begin{bmatrix} \bar{c} & A^T \bar{c} & \cdots & (A^T)^{n-2} \bar{c} & (A^T)^{n-1} \bar{c} \end{bmatrix}\)

- \(\rightarrow \begin{bmatrix} \bar{c} & A^T \bar{c} & \cdots & (A^T)^{n-2} \bar{c} & (A^T)^{n-1} \bar{c} \end{bmatrix}^T\) must be full rank

- \(\rightarrow \begin{bmatrix} \bar{c}^T \rightarrow A \rightarrow A^2 \rightarrow \cdots \rightarrow A^{n-1} \rightarrow \end{bmatrix}\) must be full rank

- Conclusion: if a system is observable, we can build an observer for it whose estimate \(\hat{x}[t]\) will approximate \(\bar{x}[t]\) more and more closely with \(t\)
Observer: Rotation Matrix Example

\[
\begin{bmatrix}
 x_1[t+1] \\
 x_2[t+1]
\end{bmatrix} = \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x_1[t] \\
 x_2[t]
\end{bmatrix},
\]

\[y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \bar{x}[t]\]

- example: \[\theta = \frac{\pi}{2}\] \[A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \]

- side note: eigenvalues of A: \[\pm j\] \[\text{BIBO unstable} \]

- let \[\bar{l} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}\], then \[A + \bar{l}\bar{c}^T = \begin{bmatrix} l_1 & -1 \\ 1 + l_2 & 0 \end{bmatrix}\]

\[\text{eigenvalues (see the notes):} \lambda_{1,2} = \frac{l_1}{2} \pm \frac{l_1^2 - 4(1 + l_2)}{2}\]

- and can easily show: \[l_1 = \lambda_1 + \lambda_2, \quad l_2 = \lambda_1\lambda_2 - 1\]

- i.e., can set \[\bar{l}\] to obtain any desired eigenvalues

- warning: if complex, ensure evs are complex conjugates

\[\text{what will happen if you don’t?}\]
Observer: Rot. Matrix Example (contd.)

- \[
\begin{bmatrix}
 x_1[t + 1] \\
 x_2[t + 1]
\end{bmatrix} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x_1[t] \\
 x_2[t]
\end{bmatrix},
\]
- \[
y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \tilde{x}[t]
\]

- now try: \(\theta = \pi \rightarrow A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \) not observable (recall)

- \[
A + \tilde{l}\tilde{c}^T = \begin{bmatrix}
 -1 + l_1 & 0 \\
 l_2 & -1
\end{bmatrix}
\]

\(\Rightarrow \) eigenvalues (see the notes):
- \(\lambda_1 = -1, \quad \lambda_2 = l_1 - 1 \)

\(\text{cannot be changed/stabilized using} \ \tilde{l} \)
Observability: The Continuous Case

- Observability for C.T. state-space systems
- and implications for placing observer eigenvalues

- **EXACTLY THE SAME CRITERIA**

 \[
 \begin{bmatrix}
 c^T \\
 c^T A \\
 c^T A^2 \\
 \vdots \\
 c^T A^{n-1}
 \end{bmatrix}
 \]

 must be full rank

- Stability for C.T. means \(\text{Re}(\text{eigenvalues}) < 0 \)
Observers: Accurate Positioning

- **Physical motion is inherently marginally stable**
 - due to the relationship between position, velocity and acceleration
 - \(\dot{x} = v, \dot{v} = a \)
 - small error in \(a \) → growing error in \(v \)
 - small error in \(v \) → growing error in \(x \)

- **You are in a car in a featureless desert**
 - you know the position where you started
 - you record your acceleration (along \(x \) and \(y \) directions)
 - to estimate your current position
 - you integrate accel./velocity to predict your current position
 - but **inevitable small errors** (eg, play in accelerator) make your predicted position more and more inaccurate (m. stability)
 - soon, your prediction becomes completely useless – miles from where you really are
 - **NOT A VERY PRACTICALLY USEFUL WAY TO LOCATE YOURSELF**
Observers for Positioning (contd.)

- **Enter GPS**
 - you have a GPS receiver and position calculator
 - but GPS isn’t perfectly accurate either (though much better than our integration technique, aka “dead reckoning”)
 - can easily be a few 10s of feet off
- **Can we combine dead reckoning and GPS**
 - for better accuracy than GPS alone?
 - **YES**: feed GPS position data into an **observer**!
 - stabilize the observer by choosing \vec{l} wisely
 - even with perpetual small GPS and acceleration errors
 - the observer’s estimate is far better than just the GPS alone!*

- **This is what all serious navigational systems use**
 - with an additional twist: \vec{l} keeps updating, becomes $\vec{l}[t]$
 - **this is the famous Kalman Filter**
 - used in all rockets, drones, autonomous cars, ships, ...
Rudolf Kálmán
“inventor” of control theory: 1950s/60s

- state-space representations
- stability, controllability, observability and implications
- Kalman filter
 - initially received with “vast skepticism” - not accepted for publication!
 - later adopted by the Apollo rocket program, the Space Shuttle, submarines, cruise missiles, UAVs/drones, autonomous vehicles, ...
Who Invented Eigendecomposition?

1852 - 1858

James Joseph Sylvester (1814-97) also coined the term “matrix”

Arthur Cayley (1821-95) Cayley-Hamilton Theorem
Who Invented Matrices?

- known and used in **China** - before 100BC (!)
 - explained in *Nine Chapters of the Mathematical Art* (1000-100 BC)
 - used to solve simultaneous eqns; they knew about determinants
- 1545: brought from China to Italy (by **Cardano**)
- 1683: **Seki** (“Japan’s Newton”) used matrices
- developed in Europe by **Gauss** and many others
- finally, into its modern form by **Cayley** (mid 1800s)
Charles Proteus Steinmetz
inventor of the phasor

- “Complex Quantities and their Use in Electrical Engineering”, July 1893
- revolutionized AC circuit/transmission calculations

• suffered from hereditary dwarfism, hunchback, and hip dysplasia